Selfuel Docs
  • Welcome to Selfuel Platform
    • Features
    • Capabilities
    • Target Audience
    • $150 Free Trial
  • Registration and Login
  • Platform UI
  • Stream Processing with Cortex
    • Cortex Quickstart Guide
    • Cortex Elements
      • Streams
      • Attributes
      • Mappings
        • 🚧Source Mapping Types
        • 🚧Sink Mapping Types
      • Node and Application Healthchecks
      • Nodes
        • Node Preview
        • Node Connectivites
        • Node Units
      • Expression Builder
        • 🚧Built-in Functions
      • Windows
        • Cron Window
        • Delay Window
        • Unique Event Window
        • First Event Window
        • Sliding Event Count Window
        • Tumbling Event Count Window
        • Session Window
        • Tumbling Event Sort Window
        • Sliding Time Window
        • Tumbling Time Window
        • Sliding Time and Event Count Window
      • Store and Cache
        • RDBMS
        • MongoDB
        • Redis
        • Elasticsearch
    • Applications
      • Applications Page
      • Creating Applications using Canvas
      • Connector Nodes Cluster
        • Source Nodes
          • CDC Source
          • Email Source
          • HTTP Source
          • HTTP Call Response Source
          • HTTP Service Source
          • Kafka Source
          • RabbitMQ Source
          • gRPC Source
          • JMS Source
          • Kafka Multi DC Source
          • JMS Source
          • AWS S3 Source
          • Google Pub-sub Source
          • AWS SQS Source
          • MQTT Source
          • Google Cloud Storage Source
          • HTTP SSE Source
          • WebSubHub Source
        • Sink Nodes
          • Email Sink
          • HTTP Sink
          • HTTP Service Response Sink
          • HTTP Call Sink
          • Kafka Sink
          • RabbitMQ Sink
          • gRPC Sink
          • JMS Sink
          • Kafka Multi DC Sink
          • AWS S3 Sink
          • Google Pub-sub Sink
          • AWS SQS Sink
          • MQTT Sink
          • Google Cloud Storage Sink
          • HTTP SSE Sink
          • WebSubHub Sink
      • Processing Nodes Cluster
        • Query
        • Join
        • Pattern
        • Sequence
        • Processor
        • 🚧On-demand Query
      • Buffer Nodes Cluster
        • Stream
        • Table
        • Window
        • Aggregation
        • Trigger
    • Run Applications
      • Run Applications Using Runners
      • Update Running Applications
      • Application Versioning
  • Data Integration with Nexus
    • Nexus Quickstart Guide
    • Nexus Elements
      • Concept
        • Config
        • Schema Feature
        • Speed Control
      • Connectors
        • Source
          • Source Connector Features
          • Source Common Options
          • AmazonDynamoDB
          • AmazonSqs
          • Cassandra
          • Clickhouse
          • CosFile
          • DB2
          • Doris
          • Easysearch
          • Elasticsearch
          • FakeSource
          • FtpFile
          • Github
          • Gitlab
          • GoogleSheets
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • HiveJdbc
          • Http
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Jira
          • Kingbase
          • Klaviyo
          • Kudu
          • Lemlist
          • Maxcompute
          • Milvus
          • MongoDB CDC
          • MongoDB
          • My Hours
          • MySQL CDC
          • MySQL
          • Neo4j
          • Notion
          • ObsFile
          • OceanBase
          • OneSignal
          • OpenMldb
          • Oracle CDC
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Persistiq
          • Phoenix
          • PostgreSQL CDC
          • PostgreSQL
          • Apache Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3File
          • SftpFile
          • Sls
          • Snowflake
          • Socket
          • SQL Server CDC
          • SQL Server
          • StarRocks
          • TDengine
          • Vertica
          • Web3j
          • Kafka
        • Sink
          • Sink Connector Features
          • Sink Common Options
          • Activemq
          • AmazonDynamoDB
          • AmazonSqs
          • Assert
          • Cassandra
          • Clickhouse
          • ClickhouseFile
          • CosFile
          • DB2
          • DataHub
          • DingTalk
          • Doris
          • Druid
          • INFINI Easysearch
          • Elasticsearch
          • Email
          • Enterprise WeChat
          • Feishu
          • FtpFile
          • GoogleFirestore
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • Http
          • Hudi
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Kafka
          • Kingbase
          • Kudu
          • Maxcompute
          • Milvus
          • MongoDB
          • MySQL
          • Neo4j
          • ObsFile
          • OceanBase
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Phoenix
          • PostgreSql
          • Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3Redshift
          • S3File
          • SelectDB Cloud
          • Sentry
          • SftpFile
          • Slack
          • Snowflake
          • Socket
          • SQL Server
          • StarRocks
          • TDengine
          • Tablestore
          • Vertica
        • Formats
          • Avro format
          • Canal Format
          • CDC Compatible Debezium-json
          • Debezium Format
          • Kafka source compatible kafka-connect-json
          • MaxWell Format
          • Ogg Format
        • Error Quick Reference Manual
      • Transform
        • Transform Common Options
        • Copy
        • FieldMapper
        • FilterRowKind
        • Filter
        • JsonPath
        • LLM
        • Replace
        • Split
        • SQL Functions
        • SQL
    • Integrations
      • Integrations Page
      • Creating Integrations Using Json
    • Run Integrations
      • Run Integrations Using Runners
      • Integration Versioning
  • Batch Processing/Storage with Maxim
    • Maxim Quickstart Guide
    • Maxim Elements
    • Queries
    • Run Queries
  • Orchestration with Routines
    • Routines Quickstart Guide
    • Routines Elements
    • Routines
    • Run Routines
  • Runners
    • Runners Page
    • Create a Runner to Run Applications
  • Security
    • Vaults
      • Vaults Page
      • Create Vaults
        • Runner-level Vaults
        • Application-level Vaults
      • Edit and Delete Vaults
      • 🚧Utilizing Vaults in Applications and Runners
    • Certificates
      • Certificates Page
      • 🚧Utilizing Certificates in Applications
      • 🟨Setting Up Security Settings
  • Monitoring Performance
    • Dashboard
    • Application Details
    • Runner Details
  • Logging
    • Log Types
  • Cost Management
    • SaaS
      • Pay-as-you-go
        • Hard Budget Cap
        • Soft Budget Cap
      • Subscriptions
    • On-prem
  • Organization Settings
    • General
    • Access Controls
      • User Roles and Privileges
    • Current Costs
    • Billing Addresses
    • Payment Accounts
    • Subscriptions
    • Pricing
    • Invoicing
  • User Settings
  • Troubleshooting
  • FAQs
Powered by GitBook
On this page
  1. Stream Processing with Cortex
  2. Applications
  3. Processing Nodes Cluster

Pattern

Pattern Nodes in Cortex serve as state machine implementations for Complex Event Processing (CEP), enabling the detection of predefined event patterns across one or more event streams over time. These nodes are adept at matching patterns, counting event occurrences, and managing logical event ordering with conditions like "and," "or," and "not."

Purpose: Pattern Nodes are designed to identify complex event patterns in real-time, without requiring immediate succession of matching events. They efficiently correlate events that are temporally separated, ensuring comprehensive pattern detection.

  1. States Creation: Users can define multiple States within a Pattern Node, each acting as a component of the state machine. In every State, there's the option to include up to two occurrences, non-occurrences, and counting conditions.

  2. Conditions and Time Limits: For each State, you can specify conditions including occurrence, non-occurrence, and counting. Time limits can be set for non-occurrences within each State, as well as an overall time limit for the Pattern Node, enhancing control over event processing timing.

  3. State Progression: States capture and process events from Stream Nodes. The progression from one State to the next is based on the evaluation of conditions within the current State. If the conditions return True, the State machine moves to the next State. Successful progression through all States, with each returning True, leads to the Pattern Node relaying output attributes from the last State to the subsequent Node.

Pattern Nodes play a crucial role in Cortex's CEP capabilities, allowing for intricate event pattern detection and processing, thereby enabling sophisticated real-time data analysis and decision-making processes.

PreviousJoinNextSequence

Last updated 1 year ago