Doris

Doris sink connector

Support Doris Version

  • exactly-once & cdc supported Doris version is >= 1.1.x

  • Array data type supported Doris version is >= 1.2.x

  • Map data type will be support in Doris version is 2.x

Key Features

Description

Used to send data to Doris. Both support streaming and batch mode. The internal implementation of Doris sink connector is cached and imported by stream load in batches.

Sink Options

Name
Type
Required
Default
Description

fenodes

String

Yes

-

Doris cluster fenodes address, the format is "fe_ip:fe_http_port, ..."

query-port

int

No

9030

Doris Fenodes query_port

username

String

Yes

-

Doris user username

password

String

Yes

-

Doris user password

database

String

Yes

-

The database name of Doris table, use ${database_name} to represent the upstream table name

table

String

Yes

-

The table name of Doris table, use ${table_name} to represent the upstream table name

table.identifier

String

Yes

-

The name of Doris table, it will deprecate after version 2.3.5, please use database and table instead.

sink.label-prefix

String

Yes

-

The label prefix used by stream load imports. In the 2pc scenario, global uniqueness is required to ensure the EOS semantics of Nexus.

sink.enable-2pc

bool

No

false

Whether to enable two-phase commit (2pc), the default is false. For two-phase commit, please refer to here.

sink.enable-delete

bool

No

-

Whether to enable deletion. This option requires Doris table to enable batch delete function (0.15+ version is enabled by default), and only supports Unique model. you can get more detail at this link

sink.check-interval

int

No

10000

check exception with the interval while loading

sink.max-retries

int

No

3

the max retry times if writing records to database failed

sink.buffer-size

int

No

256 * 1024

the buffer size to cache data for stream load.

sink.buffer-count

int

No

3

the buffer count to cache data for stream load.

doris.batch.size

int

No

1024

the batch size of the write to doris each http request, when the row reaches the size or checkpoint is executed, the data of cached will write to server.

needs_unsupported_type_casting

boolean

No

false

Whether to enable the unsupported type casting, such as Decimal64 to Double

schema_save_mode

Enum

no

CREATE_SCHEMA_WHEN_NOT_EXIST

the schema save mode, please refer to schema_save_mode below

data_save_mode

Enum

no

APPEND_DATA

the data save mode, please refer to data_save_mode below

save_mode_create_template

string

no

see below

see below

custom_sql

String

no

-

When data_save_mode selects CUSTOM_PROCESSING, you should fill in the CUSTOM_SQL parameter. This parameter usually fills in a SQL that can be executed. SQL will be executed before synchronization tasks.

doris.config

map

yes

-

This option is used to support operations such as insert, delete, and update when automatically generate sql,and supported formats.

schema_save_mode[Enum]

Before the synchronous task is turned on, different treatment schemes are selected for the existing surface structure of the target side. Option introduction: RECREATE_SCHEMA :Will create when the table does not exist, delete and rebuild when the table is saved CREATE_SCHEMA_WHEN_NOT_EXIST :Will Created when the table does not exist, skipped when the table is saved ERROR_WHEN_SCHEMA_NOT_EXIST :Error will be reported when the table does not exist

data_save_mode[Enum]

Before the synchronous task is turned on, different processing schemes are selected for data existing data on the target side. Option introduction: DROP_DATA: Preserve database structure and delete data APPEND_DATA:Preserve database structure, preserve data CUSTOM_PROCESSING:User defined processing ERROR_WHEN_DATA_EXISTS:When there is data, an error is reported

save_mode_create_template

We use templates to automatically create Doris tables, which will create corresponding table creation statements based on the type of upstream data and schema type, and the default template can be modified according to the situation.

Default template:

CREATE TABLE IF NOT EXISTS `${database}`.`${table}` (
${rowtype_primary_key},
${rowtype_fields}
) ENGINE=OLAP
 UNIQUE KEY (${rowtype_primary_key})
DISTRIBUTED BY HASH (${rowtype_primary_key})
 PROPERTIES (
"replication_allocation" = "tag.location.default: 1",
"in_memory" = "false",
"storage_format" = "V2",
"disable_auto_compaction" = "false"
)

If a custom field is filled in the template, such as adding an id field

CREATE TABLE IF NOT EXISTS `${database}`.`${table}`
(   
    id,
    ${rowtype_fields}
) ENGINE = OLAP UNIQUE KEY (${rowtype_primary_key})
    DISTRIBUTED BY HASH (${rowtype_primary_key})
    PROPERTIES
(
    "replication_num" = "1"
);

The connector will automatically obtain the corresponding type from the upstream to complete the filling, and remove the id field from rowtype_fields. This method can be used to customize the modification of field types and attributes.

You can use the following placeholders

  • database: Used to get the database in the upstream schema

  • table_name: Used to get the table name in the upstream schema

  • rowtype_fields: Used to get all the fields in the upstream schema, we will automatically map to the field description of Doris

  • rowtype_primary_key: Used to get the primary key in the upstream schema (maybe a list)

  • rowtype_unique_key: Used to get the unique key in the upstream schema (maybe a list)

  • rowtype_duplicate_key: Used to get the duplicate key in the upstream schema (only for doris source, maybe a list)

Data Type Mapping

Doris Data Type
Nexus Data Type

BOOLEAN

BOOLEAN

TINYINT

TINYINT

SMALLINT

SMALLINT TINYINT

INT

INT SMALLINT TINYINT

BIGINT

BIGINT INT SMALLINT TINYINT

LARGEINT

BIGINT INT SMALLINT TINYINT

FLOAT

FLOAT

DOUBLE

DOUBLE FLOAT

DECIMAL

DECIMAL DOUBLE FLOAT

DATE

DATE

DATETIME

TIMESTAMP

CHAR

STRING

VARCHAR

STRING

STRING

STRING

ARRAY

ARRAY

MAP

MAP

JSON

STRING

HLL

Not supported yet

BITMAP

Not supported yet

QUANTILE_STATE

Not supported yet

STRUCT

Not supported yet

Supported import data formats

The supported formats include CSV and JSON

Task Example

Simple:

The following example describes writing multiple data types to Doris, and users need to create corresponding tables downstream

env {
  parallelism = 1
  job.mode = "BATCH"
  checkpoint.interval = 10000
}

source {
  FakeSource {
    row.num = 10
    map.size = 10
    array.size = 10
    bytes.length = 10
    string.length = 10
    schema = {
      fields {
        c_map = "map<string, array<int>>"
        c_array = "array<int>"
        c_string = string
        c_boolean = boolean
        c_tinyint = tinyint
        c_smallint = smallint
        c_int = int
        c_bigint = bigint
        c_float = float
        c_double = double
        c_decimal = "decimal(16, 1)"
        c_null = "null"
        c_bytes = bytes
        c_date = date
        c_timestamp = timestamp
      }
    }
    }
}

sink {
  Doris {
    fenodes = "doris_cdc_e2e:8030"
    username = root
    password = ""
    database = "test"
    table = "e2e_table_sink"
    sink.label-prefix = "test-cdc"
    sink.enable-2pc = "true"
    sink.enable-delete = "true"
    doris.config {
      format = "json"
      read_json_by_line = "true"
    }
  }
}

CDC(Change Data Capture) Event:

This example defines a Nexus synchronization task that automatically generates data through FakeSource and sends it to Doris Sink,FakeSource simulates CDC data with schema, score (int type),Doris needs to create a table sink named test.e2e_table_sink and a corresponding table for it.

env {
  parallelism = 1
  job.mode = "BATCH"
  checkpoint.interval = 10000
}

source {
  FakeSource {
    schema = {
      fields {
        pk_id = bigint
        name = string
        score = int
        sex = boolean
        number = tinyint
        height = float
        sight = double
        create_time = date
        update_time = timestamp
      }
    }
    rows = [
      {
        kind = INSERT
        fields = [1, "A", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      },
      {
        kind = INSERT
        fields = [2, "B", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      },
      {
        kind = INSERT
        fields = [3, "C", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      },
      {
        kind = UPDATE_BEFORE
        fields = [1, "A", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      },
      {
        kind = UPDATE_AFTER
        fields = [1, "A_1", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      },
      {
        kind = DELETE
        fields = [2, "B", 100, true, 1, 170.0, 4.3, "2020-02-02", "2020-02-02T02:02:02"]
      }
    ]
  }
}

sink {
  Doris {
    fenodes = "doris_cdc_e2e:8030"
    username = root
    password = ""
    database = "test"
    table = "e2e_table_sink"
    sink.label-prefix = "test-cdc"
    sink.enable-2pc = "true"
    sink.enable-delete = "true"
    doris.config {
      format = "json"
      read_json_by_line = "true"
    }
  }
}

Use JSON format to import data

sink {
    Doris {
        fenodes = "e2e_dorisdb:8030"
        username = root
        password = ""
        database = "test"
        table = "e2e_table_sink"
        sink.enable-2pc = "true"
        sink.label-prefix = "test_json"
        doris.config = {
            format="json"
            read_json_by_line="true"
        }
    }
}

Use CSV format to import data

sink {
    Doris {
        fenodes = "e2e_dorisdb:8030"
        username = root
        password = ""
        database = "test"
        table = "e2e_table_sink"
        sink.enable-2pc = "true"
        sink.label-prefix = "test_csv"
        doris.config = {
          format = "csv"
          column_separator = ","
        }
    }
}

Multiple table

example1

env {
  parallelism = 1
  job.mode = "STREAMING"
  checkpoint.interval = 5000
}

source {
  Mysql-CDC {
    base-url = "jdbc:mysql://127.0.0.1:3306/nexus"
    username = "root"
    password = "******"
    
    table-names = ["nexus.role","nexus.user","galileo.Bucket"]
  }
}

transform {
}

sink {
  Doris {
    fenodes = "doris_cdc_e2e:8030"
    username = root
    password = ""
    database = "${database_name}_test"
    table = "${table_name}_test"
    sink.label-prefix = "test-cdc"
    sink.enable-2pc = "true"
    sink.enable-delete = "true"
    doris.config {
      format = "json"
      read_json_by_line = "true"
    }
  }
}

example2

env {
  parallelism = 1
  job.mode = "BATCH"
}

source {
  Jdbc {
    driver = oracle.jdbc.driver.OracleDriver
    url = "jdbc:oracle:thin:@localhost:1521/XE"
    user = testUser
    password = testPassword

    table_list = [
      {
        table_path = "TESTSCHEMA.TABLE_1"
      },
      {
        table_path = "TESTSCHEMA.TABLE_2"
      }
    ]
  }
}

transform {
}

sink {
  Doris {
    fenodes = "doris_cdc_e2e:8030"
    username = root
    password = ""
    database = "${schema_name}_test"
    table = "${table_name}_test"
    sink.label-prefix = "test-cdc"
    sink.enable-2pc = "true"
    sink.enable-delete = "true"
    doris.config {
      format = "json"
      read_json_by_line = "true"
    }
  }
}

Last updated