Selfuel Docs
  • Welcome to Selfuel Platform
    • Features
    • Capabilities
    • Target Audience
    • $150 Free Trial
  • Registration and Login
  • Platform UI
  • Stream Processing with Cortex
    • Cortex Quickstart Guide
    • Cortex Elements
      • Streams
      • Attributes
      • Mappings
        • 🚧Source Mapping Types
        • 🚧Sink Mapping Types
      • Node and Application Healthchecks
      • Nodes
        • Node Preview
        • Node Connectivites
        • Node Units
      • Expression Builder
        • 🚧Built-in Functions
      • Windows
        • Cron Window
        • Delay Window
        • Unique Event Window
        • First Event Window
        • Sliding Event Count Window
        • Tumbling Event Count Window
        • Session Window
        • Tumbling Event Sort Window
        • Sliding Time Window
        • Tumbling Time Window
        • Sliding Time and Event Count Window
      • Store and Cache
        • RDBMS
        • MongoDB
        • Redis
        • Elasticsearch
    • Applications
      • Applications Page
      • Creating Applications using Canvas
      • Connector Nodes Cluster
        • Source Nodes
          • CDC Source
          • Email Source
          • HTTP Source
          • HTTP Call Response Source
          • HTTP Service Source
          • Kafka Source
          • RabbitMQ Source
          • gRPC Source
          • JMS Source
          • Kafka Multi DC Source
          • JMS Source
          • AWS S3 Source
          • Google Pub-sub Source
          • AWS SQS Source
          • MQTT Source
          • Google Cloud Storage Source
          • HTTP SSE Source
          • WebSubHub Source
        • Sink Nodes
          • Email Sink
          • HTTP Sink
          • HTTP Service Response Sink
          • HTTP Call Sink
          • Kafka Sink
          • RabbitMQ Sink
          • gRPC Sink
          • JMS Sink
          • Kafka Multi DC Sink
          • AWS S3 Sink
          • Google Pub-sub Sink
          • AWS SQS Sink
          • MQTT Sink
          • Google Cloud Storage Sink
          • HTTP SSE Sink
          • WebSubHub Sink
      • Processing Nodes Cluster
        • Query
        • Join
        • Pattern
        • Sequence
        • Processor
        • 🚧On-demand Query
      • Buffer Nodes Cluster
        • Stream
        • Table
        • Window
        • Aggregation
        • Trigger
    • Run Applications
      • Run Applications Using Runners
      • Update Running Applications
      • Application Versioning
  • Data Integration with Nexus
    • Nexus Quickstart Guide
    • Nexus Elements
      • Concept
        • Config
        • Schema Feature
        • Speed Control
      • Connectors
        • Source
          • Source Connector Features
          • Source Common Options
          • AmazonDynamoDB
          • AmazonSqs
          • Cassandra
          • Clickhouse
          • CosFile
          • DB2
          • Doris
          • Easysearch
          • Elasticsearch
          • FakeSource
          • FtpFile
          • Github
          • Gitlab
          • GoogleSheets
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • HiveJdbc
          • Http
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Jira
          • Kingbase
          • Klaviyo
          • Kudu
          • Lemlist
          • Maxcompute
          • Milvus
          • MongoDB CDC
          • MongoDB
          • My Hours
          • MySQL CDC
          • MySQL
          • Neo4j
          • Notion
          • ObsFile
          • OceanBase
          • OneSignal
          • OpenMldb
          • Oracle CDC
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Persistiq
          • Phoenix
          • PostgreSQL CDC
          • PostgreSQL
          • Apache Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3File
          • SftpFile
          • Sls
          • Snowflake
          • Socket
          • SQL Server CDC
          • SQL Server
          • StarRocks
          • TDengine
          • Vertica
          • Web3j
          • Kafka
        • Sink
          • Sink Connector Features
          • Sink Common Options
          • Activemq
          • AmazonDynamoDB
          • AmazonSqs
          • Assert
          • Cassandra
          • Clickhouse
          • ClickhouseFile
          • CosFile
          • DB2
          • DataHub
          • DingTalk
          • Doris
          • Druid
          • INFINI Easysearch
          • Elasticsearch
          • Email
          • Enterprise WeChat
          • Feishu
          • FtpFile
          • GoogleFirestore
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • Http
          • Hudi
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Kafka
          • Kingbase
          • Kudu
          • Maxcompute
          • Milvus
          • MongoDB
          • MySQL
          • Neo4j
          • ObsFile
          • OceanBase
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Phoenix
          • PostgreSql
          • Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3Redshift
          • S3File
          • SelectDB Cloud
          • Sentry
          • SftpFile
          • Slack
          • Snowflake
          • Socket
          • SQL Server
          • StarRocks
          • TDengine
          • Tablestore
          • Vertica
        • Formats
          • Avro format
          • Canal Format
          • CDC Compatible Debezium-json
          • Debezium Format
          • Kafka source compatible kafka-connect-json
          • MaxWell Format
          • Ogg Format
        • Error Quick Reference Manual
      • Transform
        • Transform Common Options
        • Copy
        • FieldMapper
        • FilterRowKind
        • Filter
        • JsonPath
        • LLM
        • Replace
        • Split
        • SQL Functions
        • SQL
    • Integrations
      • Integrations Page
      • Creating Integrations Using Json
    • Run Integrations
      • Run Integrations Using Runners
      • Integration Versioning
  • Batch Processing/Storage with Maxim
    • Maxim Quickstart Guide
    • Maxim Elements
    • Queries
    • Run Queries
  • Orchestration with Routines
    • Routines Quickstart Guide
    • Routines Elements
    • Routines
    • Run Routines
  • Runners
    • Runners Page
    • Create a Runner to Run Applications
  • Security
    • Vaults
      • Vaults Page
      • Create Vaults
        • Runner-level Vaults
        • Application-level Vaults
      • Edit and Delete Vaults
      • 🚧Utilizing Vaults in Applications and Runners
    • Certificates
      • Certificates Page
      • 🚧Utilizing Certificates in Applications
      • 🟨Setting Up Security Settings
  • Monitoring Performance
    • Dashboard
    • Application Details
    • Runner Details
  • Logging
    • Log Types
  • Cost Management
    • SaaS
      • Pay-as-you-go
        • Hard Budget Cap
        • Soft Budget Cap
      • Subscriptions
    • On-prem
  • Organization Settings
    • General
    • Access Controls
      • User Roles and Privileges
    • Current Costs
    • Billing Addresses
    • Payment Accounts
    • Subscriptions
    • Pricing
    • Invoicing
  • User Settings
  • Troubleshooting
  • FAQs
Powered by GitBook
On this page
  • Description​
  • Key features​
  • Options​
  • Parallel Reader​
  • tips​
  • appendix​
  • Example​
  1. Data Integration with Nexus
  2. Nexus Elements
  3. Connectors
  4. Source

JDBC

PreviousIoTDBNextJira

Last updated 8 months ago

JDBC source connector

Description

Read external data source data through JDBC.

Key features

supports query SQL and can achieve projection effect.

Options

name
type
required
default value
description

url

String

Yes

-

The URL of the JDBC connection. Refer to a case: jdbc:postgresql://localhost/test

driver

String

Yes

-

The jdbc class name used to connect to the remote data source, if you use MySQL the value is com.mysql.cj.jdbc.Driver.

user

String

No

-

userName

password

String

No

-

password

query

String

No

-

Query statement

compatible_mode

String

No

-

The compatible mode of database, required when the database supports multiple compatible modes. For example, when using OceanBase database, you need to set it to 'mysql' or 'oracle'.

connection_check_timeout_sec

Int

No

30

The time in seconds to wait for the database operation used to validate the connection to complete.

partition_column

String

No

-

The column name for split data.

partition_upper_bound

Long

No

-

The partition_column max value for scan, if not set Nexus will query database get max value.

partition_lower_bound

Long

No

-

The partition_column min value for scan, if not set Nexus will query database get min value.

partition_num

Int

No

job parallelism

Not recommended for use, The correct approach is to control the number of split through split.size How many splits do we need to split into, only support positive integer. default value is job parallelism.

use_select_count

Boolean

No

false

Use select count for table count rather then other methods in dynamic chunk split stage. This is currently only available for jdbc-oracle.In this scenario, select count directly is used when it is faster to update statistics using sql from analysis table

skip_analyze

Boolean

No

false

Skip the analysis of table count in dynamic chunk split stage. This is currently only available for jdbc-oracle.In this scenario, you schedule analysis table sql to update related table statistics periodically or your table data does not change frequently

fetch_size

Int

No

0

For queries that return a large number of objects, you can configure the row fetch size used in the query to improve performance by reducing the number database hits required to satisfy the selection criteria. Zero means use jdbc default value.

properties

Map

No

-

Additional connection configuration parameters,when properties and URL have the same parameters, the priority is determined by the specific implementation of the driver. For example, in MySQL, properties take precedence over the URL.

table_path

String

No

-

The path to the full path of table, you can use this configuration instead of query. examples: - mysql: "testdb.table1" - oracle: "test_schema.table1" - sqlserver: "testdb.test_schema.table1" - postgresql: "testdb.test_schema.table1" - iris: "test_schema.table1"

table_list

Array

No

-

The list of tables to be read, you can use this configuration instead of table_path

where_condition

String

No

-

Common row filter conditions for all tables/queries, must start with where. for example where id > 100

split.size

Int

No

8096

How many rows in one split, captured tables are split into multiple splits when read of table.

split.even-distribution.factor.lower-bound

Double

No

0.05

Not recommended for use. The lower bound of the chunk key distribution factor. This factor is used to determine whether the table data is evenly distributed. If the distribution factor is calculated to be greater than or equal to this lower bound (i.e., (MAX(id) - MIN(id) + 1) / row count), the table chunks would be optimized for even distribution. Otherwise, if the distribution factor is less, the table will be considered as unevenly distributed and the sampling-based sharding strategy will be used if the estimated shard count exceeds the value specified by sample-sharding.threshold. The default value is 0.05.

split.even-distribution.factor.upper-bound

Double

No

100

Not recommended for use. The upper bound of the chunk key distribution factor. This factor is used to determine whether the table data is evenly distributed. If the distribution factor is calculated to be less than or equal to this upper bound (i.e., (MAX(id) - MIN(id) + 1) / row count), the table chunks would be optimized for even distribution. Otherwise, if the distribution factor is greater, the table will be considered as unevenly distributed and the sampling-based sharding strategy will be used if the estimated shard count exceeds the value specified by sample-sharding.threshold. The default value is 100.0.

split.sample-sharding.threshold

Int

No

1000

This configuration specifies the threshold of estimated shard count to trigger the sample sharding strategy. When the distribution factor is outside the bounds specified by chunk-key.even-distribution.factor.upper-bound and chunk-key.even-distribution.factor.lower-bound, and the estimated shard count (calculated as approximate row count / chunk size) exceeds this threshold, the sample sharding strategy will be used. This can help to handle large datasets more efficiently. The default value is 1000 shards.

split.inverse-sampling.rate

Int

No

1000

The inverse of the sampling rate used in the sample sharding strategy. For example, if this value is set to 1000, it means a 1/1000 sampling rate is applied during the sampling process. This option provides flexibility in controlling the granularity of the sampling, thus affecting the final number of shards. It's especially useful when dealing with very large datasets where a lower sampling rate is preferred. The default value is 1000.

common-options

No

-

The JDBC Source connector supports parallel reading of data from tables. Nexus will use certain rules to split the data in the table, which will be handed over to readers for reading. The number of readers is determined by the parallelism option.

Split Key Rules:

  1. If partition_column is not null, It will be used to calculate split. The column must in Supported split data type.

  2. If partition_column is null, Nexus will read the schema from table and get the Primary Key and Unique Index. If there are more than one column in Primary Key and Unique Index, The first column which in the supported split data type will be used to split data. For example, the table have Primary Key(nn guid, name varchar), because guid id not in supported split data type, so the column name will be used to split data.

Supported split data type:

  • String

  • Number(int, bigint, decimal, ...)

  • Date

If the table can not be split(for example, table have no Primary Key or Unique Index, and partition_column is not set), it will run in single concurrency.

Use table_path to replace query for single table reading. If you need to read multiple tables, use table_list.

there are some reference value for params above.

datasource
driver
url

mysql

com.mysql.cj.jdbc.Driver

jdbc:mysql://localhost:3306/test

postgresql

org.postgresql.Driver

jdbc:postgresql://localhost:5432/postgres

dm

dm.jdbc.driver.DmDriver

jdbc:dm://localhost:5236

phoenix

org.apache.phoenix.queryserver.client.Driver

jdbc:phoenix:thin:url=http://localhost:8765;serialization=PROTOBUF

sqlserver

com.microsoft.sqlserver.jdbc.SQLServerDriver

jdbc:sqlserver://localhost:1433

oracle

oracle.jdbc.OracleDriver

jdbc:oracle:thin:@localhost:1521/xepdb1

sqlite

org.sqlite.JDBC

jdbc:sqlite:test.db

gbase8a

com.gbase.jdbc.Driver

jdbc:gbase://e2e_gbase8aDb:5258/test

starrocks

com.mysql.cj.jdbc.Driver

jdbc:mysql://localhost:3306/test

db2

com.ibm.db2.jcc.DB2Driver

jdbc:db2://localhost:50000/testdb

tablestore

com.alicloud.openservices.tablestore.jdbc.OTSDriver

"jdbc:ots:http s://myinstance.cn-hangzhou.ots.aliyuncs.com/myinstance"

saphana

com.sap.db.jdbc.Driver

jdbc:sap://localhost:39015

doris

com.mysql.cj.jdbc.Driver

jdbc:mysql://localhost:3306/test

teradata

com.teradata.jdbc.TeraDriver

jdbc:teradata://localhost/DBS_PORT=1025,DATABASE=test

Snowflake

net.snowflake.client.jdbc.SnowflakeDriver

jdbc:snowflake://<account_name>.snowflakecomputing.com

Redshift

com.amazon.redshift.jdbc42.Driver

jdbc:redshift://localhost:5439/testdb?defaultRowFetchSize=1000

Vertica

com.vertica.jdbc.Driver

jdbc:vertica://localhost:5433

Kingbase

com.kingbase8.Driver

jdbc:kingbase8://localhost:54321/db_test

OceanBase

com.oceanbase.jdbc.Driver

jdbc:oceanbase://localhost:2881

Hive

org.apache.hive.jdbc.HiveDriver

jdbc:hive2://localhost:10000

xugu

com.xugu.cloudjdbc.Driver

jdbc:xugu://localhost:5138

InterSystems IRIS

com.intersystems.jdbc.IRISDriver

jdbc:IRIS://localhost:1972/%SYS

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    query = "select * from type_bin"
}
Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    use_select_count = true 
    query = "select * from type_bin"
}
Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"
    skip_analyze = true 
    query = "select * from type_bin"
}
env {
  parallelism = 10
  job.mode = "BATCH"
}
source {
    Jdbc {
        url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        query = "select * from type_bin"
        partition_column = "id"
        split.size = 10000
        # Read start boundary
        #partition_lower_bound = ...
        # Read end boundary
        #partition_upper_bound = ...
    }
}

sink {
  Console {}
}

It is more efficient to specify the data within the upper and lower bounds of the query. It is more efficient to read your data source according to the upper and lower boundaries you configured.

source {
    Jdbc {
        url = "jdbc:mysql://localhost:3306/test?serverTimezone=GMT%2b8&useUnicode=true&characterEncoding=UTF-8&rewriteBatchedStatements=true"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        # Define query logic as required
        query = "select * from type_bin"
        partition_column = "id"
        # Read start boundary
        partition_lower_bound = 1
        # Read end boundary
        partition_upper_bound = 500
        partition_num = 10
        properties {
         useSSL=false
        }
    }
}

Configuring table_path will turn on auto split, you can configure split.* to adjust the split strategy

env {
  parallelism = 10
  job.mode = "BATCH"
}
source {
    Jdbc {
        url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
        driver = "com.mysql.cj.jdbc.Driver"
        connection_check_timeout_sec = 100
        user = "root"
        password = "123456"
        table_path = "testdb.table1"
        query = "select * from testdb.table1"
        split.size = 10000
    }
}

sink {
  Console {}
}

Configuring table_list will turn on auto split, you can configure `split.` to adjust the split strategy*

Jdbc {
    url = "jdbc:mysql://localhost/test?serverTimezone=GMT%2b8"
    driver = "com.mysql.cj.jdbc.Driver"
    connection_check_timeout_sec = 100
    user = "root"
    password = "123456"

    table_list = [
        {
          # e.g. table_path = "testdb.table1"、table_path = "test_schema.table1"、table_path = "testdb.test_schema.table1"
          table_path = "testdb.table1"
        },
        {
          table_path = "testdb.table2"
          # Use query filetr rows & columns
          query = "select id, name from testdb.table2 where id > 100"
        }
    ]
    #where_condition= "where id > 100"
    #split.size = 10000
    #split.even-distribution.factor.upper-bound = 100
    #split.even-distribution.factor.lower-bound = 0.05
    #split.sample-sharding.threshold = 1000
    #split.inverse-sampling.rate = 1000
}

Source plugin common parameters, please refer to for details.

Parallel Reader

tips

appendix

Example

simple

Case 1

Case 2 Use the select count(*) instead of analysis table for count table rows in dynamic chunk split stage

Case 3 Use the select NUM_ROWS from all_tables for the table rows but skip the analyze table.

parallel by partition_column

Parallel Boundary:

parallel by Primary Key or Unique Index

multiple table read:

​
​
​
​
​
​
​
​
​
​
​
​
​
​
​
Source Common Options