Selfuel Docs
  • Welcome to Selfuel Platform
    • Features
    • Capabilities
    • Target Audience
    • $150 Free Trial
  • Registration and Login
  • Platform UI
  • Stream Processing with Cortex
    • Cortex Quickstart Guide
    • Cortex Elements
      • Streams
      • Attributes
      • Mappings
        • 🚧Source Mapping Types
        • 🚧Sink Mapping Types
      • Node and Application Healthchecks
      • Nodes
        • Node Preview
        • Node Connectivites
        • Node Units
      • Expression Builder
        • 🚧Built-in Functions
      • Windows
        • Cron Window
        • Delay Window
        • Unique Event Window
        • First Event Window
        • Sliding Event Count Window
        • Tumbling Event Count Window
        • Session Window
        • Tumbling Event Sort Window
        • Sliding Time Window
        • Tumbling Time Window
        • Sliding Time and Event Count Window
      • Store and Cache
        • RDBMS
        • MongoDB
        • Redis
        • Elasticsearch
    • Applications
      • Applications Page
      • Creating Applications using Canvas
      • Connector Nodes Cluster
        • Source Nodes
          • CDC Source
          • Email Source
          • HTTP Source
          • HTTP Call Response Source
          • HTTP Service Source
          • Kafka Source
          • RabbitMQ Source
          • gRPC Source
          • JMS Source
          • Kafka Multi DC Source
          • JMS Source
          • AWS S3 Source
          • Google Pub-sub Source
          • AWS SQS Source
          • MQTT Source
          • Google Cloud Storage Source
          • HTTP SSE Source
          • WebSubHub Source
        • Sink Nodes
          • Email Sink
          • HTTP Sink
          • HTTP Service Response Sink
          • HTTP Call Sink
          • Kafka Sink
          • RabbitMQ Sink
          • gRPC Sink
          • JMS Sink
          • Kafka Multi DC Sink
          • AWS S3 Sink
          • Google Pub-sub Sink
          • AWS SQS Sink
          • MQTT Sink
          • Google Cloud Storage Sink
          • HTTP SSE Sink
          • WebSubHub Sink
      • Processing Nodes Cluster
        • Query
        • Join
        • Pattern
        • Sequence
        • Processor
        • 🚧On-demand Query
      • Buffer Nodes Cluster
        • Stream
        • Table
        • Window
        • Aggregation
        • Trigger
    • Run Applications
      • Run Applications Using Runners
      • Update Running Applications
      • Application Versioning
  • Data Integration with Nexus
    • Nexus Quickstart Guide
    • Nexus Elements
      • Concept
        • Config
        • Schema Feature
        • Speed Control
      • Connectors
        • Source
          • Source Connector Features
          • Source Common Options
          • AmazonDynamoDB
          • AmazonSqs
          • Cassandra
          • Clickhouse
          • CosFile
          • DB2
          • Doris
          • Easysearch
          • Elasticsearch
          • FakeSource
          • FtpFile
          • Github
          • Gitlab
          • GoogleSheets
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • HiveJdbc
          • Http
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Jira
          • Kingbase
          • Klaviyo
          • Kudu
          • Lemlist
          • Maxcompute
          • Milvus
          • MongoDB CDC
          • MongoDB
          • My Hours
          • MySQL CDC
          • MySQL
          • Neo4j
          • Notion
          • ObsFile
          • OceanBase
          • OneSignal
          • OpenMldb
          • Oracle CDC
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Persistiq
          • Phoenix
          • PostgreSQL CDC
          • PostgreSQL
          • Apache Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3File
          • SftpFile
          • Sls
          • Snowflake
          • Socket
          • SQL Server CDC
          • SQL Server
          • StarRocks
          • TDengine
          • Vertica
          • Web3j
          • Kafka
        • Sink
          • Sink Connector Features
          • Sink Common Options
          • Activemq
          • AmazonDynamoDB
          • AmazonSqs
          • Assert
          • Cassandra
          • Clickhouse
          • ClickhouseFile
          • CosFile
          • DB2
          • DataHub
          • DingTalk
          • Doris
          • Druid
          • INFINI Easysearch
          • Elasticsearch
          • Email
          • Enterprise WeChat
          • Feishu
          • FtpFile
          • GoogleFirestore
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • Http
          • Hudi
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Kafka
          • Kingbase
          • Kudu
          • Maxcompute
          • Milvus
          • MongoDB
          • MySQL
          • Neo4j
          • ObsFile
          • OceanBase
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Phoenix
          • PostgreSql
          • Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3Redshift
          • S3File
          • SelectDB Cloud
          • Sentry
          • SftpFile
          • Slack
          • Snowflake
          • Socket
          • SQL Server
          • StarRocks
          • TDengine
          • Tablestore
          • Vertica
        • Formats
          • Avro format
          • Canal Format
          • CDC Compatible Debezium-json
          • Debezium Format
          • Kafka source compatible kafka-connect-json
          • MaxWell Format
          • Ogg Format
        • Error Quick Reference Manual
      • Transform
        • Transform Common Options
        • Copy
        • FieldMapper
        • FilterRowKind
        • Filter
        • JsonPath
        • LLM
        • Replace
        • Split
        • SQL Functions
        • SQL
    • Integrations
      • Integrations Page
      • Creating Integrations Using Json
    • Run Integrations
      • Run Integrations Using Runners
      • Integration Versioning
  • Batch Processing/Storage with Maxim
    • Maxim Quickstart Guide
    • Maxim Elements
    • Queries
    • Run Queries
  • Orchestration with Routines
    • Routines Quickstart Guide
    • Routines Elements
    • Routines
    • Run Routines
  • Runners
    • Runners Page
    • Create a Runner to Run Applications
  • Security
    • Vaults
      • Vaults Page
      • Create Vaults
        • Runner-level Vaults
        • Application-level Vaults
      • Edit and Delete Vaults
      • 🚧Utilizing Vaults in Applications and Runners
    • Certificates
      • Certificates Page
      • 🚧Utilizing Certificates in Applications
      • 🟨Setting Up Security Settings
  • Monitoring Performance
    • Dashboard
    • Application Details
    • Runner Details
  • Logging
    • Log Types
  • Cost Management
    • SaaS
      • Pay-as-you-go
        • Hard Budget Cap
        • Soft Budget Cap
      • Subscriptions
    • On-prem
  • Organization Settings
    • General
    • Access Controls
      • User Roles and Privileges
    • Current Costs
    • Billing Addresses
    • Payment Accounts
    • Subscriptions
    • Pricing
    • Invoicing
  • User Settings
  • Troubleshooting
  • FAQs
Powered by GitBook
On this page
  • Key Features​
  • Description​
  • Data Type Mapping​
  • Source Options​
  • How to Create a Sftp Data Synchronization Jobs​
  1. Data Integration with Nexus
  2. Nexus Elements
  3. Connectors
  4. Source

SftpFile

PreviousS3FileNextSls

Last updated 8 months ago

Sftp file source connector

Key Features

Description

Read data from sftp file server.

tip

We made some trade-offs in order to support more file types, so we used the HDFS protocol for internal access to Sftp and this connector need some hadoop dependencies. It only supports hadoop version 2.9.X+.

The File does not have a specific type list, and we can indicate which Nexus data type the corresponding data needs to be converted to by specifying the Schema in the config.

Nexus Data type

STRING

SHORT

INT

BIGINT

BOOLEAN

DOUBLE

DECIMAL

FLOAT

DATE

TIME

TIMESTAMP

BYTES

ARRAY

MAP

Name
Type
Required
default value
Description

host

String

Yes

-

The target sftp host is required

port

Int

Yes

-

The target sftp port is required

user

String

Yes

-

The target sftp username is required

password

String

Yes

-

The target sftp password is required

path

String

Yes

-

The source file path.

file_format_type

String

Yes

-

Please check #file_format_type below

file_filter_pattern

String

No

-

Filter pattern, which used for filtering files.

delimiter/field_delimiter

String

No

\001

delimiter parameter will deprecate after version 2.3.5, please use field_delimiter instead. Field delimiter, used to tell connector how to slice and dice fields when reading text files. Default \001, the same as hive's default delimiter

parse_partition_from_path

Boolean

No

true

Control whether parse the partition keys and values from file path For example if you read a file from path oss://hadoop-cluster/tmp/nexus/parquet/name=tyrantlucifer/age=26 Every record data from file will be added these two fields: name age tyrantlucifer 26 Tips: Do not define partition fields in schema option

date_format

String

No

yyyy-MM-dd

Date type format, used to tell connector how to convert string to date, supported as the following formats: yyyy-MM-dd yyyy.MM.dd yyyy/MM/dd default yyyy-MM-dd

datetime_format

String

No

yyyy-MM-dd HH:mm:ss

Datetime type format, used to tell connector how to convert string to datetime, supported as the following formats: yyyy-MM-dd HH:mm:ss yyyy.MM.dd HH:mm:ss yyyy/MM/dd HH:mm:ss yyyyMMddHHmmss default yyyy-MM-dd HH:mm:ss

time_format

String

No

HH:mm:ss

Time type format, used to tell connector how to convert string to time, supported as the following formats: HH:mm:ss HH:mm:ss.SSS default HH:mm:ss

skip_header_row_number

Long

No

0

Skip the first few lines, but only for the txt and csv. For example, set like following: skip_header_row_number = 2 then Nexus will skip the first 2 lines from source files

read_columns

list

no

-

The read column list of the data source, user can use it to implement field projection.

sheet_name

String

No

-

Reader the sheet of the workbook,Only used when file_format is excel.

xml_row_tag

string

no

-

Specifies the tag name of the data rows within the XML file, only used when file_format is xml.

xml_use_attr_format

boolean

no

-

Specifies whether to process data using the tag attribute format, only used when file_format is xml.

schema

Config

No

-

Please check #schema below

compress_codec

String

No

None

The compress codec of files and the details that supported as the following shown: - txt: lzo None - json: lzo None - csv: lzo None - orc: lzo snappy lz4 zlib None - parquet: lzo snappy lz4 gzip brotli zstd None Tips: excel type does Not support any compression format

encoding

string

no

UTF-8

common-options

No

-

File type, supported as the following file types: text csv parquet orc json excel xml binary If you assign file type to json, you should also assign schema option to tell connector how to parse data to the row you want. For example: upstream data is the following:

{"code":  200, "data":  "get success", "success":  true}

You can also save multiple pieces of data in one file and split them by newline:

{"code":  200, "data":  "get success", "success":  true}
{"code":  300, "data":  "get failed", "success":  false}

you should assign schema as the following:

schema {
    fields {
        code = int
        data = string
        success = boolean
    }
}

connector will generate data as the following: | code | data | success | |------|-------------|---------| | 200 | get success | true | If you assign file type to parquet orc, schema option not required, connector can find the schema of upstream data automatically. If you assign file type to text csv, you can choose to specify the schema information or not. For example, upstream data is the following:

tyrantlucifer#26#male

If you do not assign data schema connector will treat the upstream data as the following: | content | |-----------------------| | tyrantlucifer#26#male | If you assign data schema, you should also assign the option field_delimiter too except CSV file type you should assign schema and delimiter as the following:

field_delimiter = "#"
schema {
    fields {
        name = string
        age = int
        gender = string 
    }
}

connector will generate data as the following: | name | age | gender | |---------------|-----|--------| | tyrantlucifer | 26 | male |

If you assign file type to binary, Nexus can synchronize files in any format, such as compressed packages, pictures, etc. In short, any files can be synchronized to the target place. Under this requirement, you need to ensure that the source and sink use binary format for file synchronization at the same time.

The compress codec of files and the details that supported as the following shown:

  • txt: lzo none

  • json: lzo none

  • csv: lzo none

  • orc/parquet: automatically recognizes the compression type, no additional settings required.

Only used when file_format_type is json,text,csv,xml. The encoding of the file to read. This param will be parsed by Charset.forName(encoding).

The schema of upstream data.

The following example demonstrates how to create a data synchronization job that reads data from sftp and prints it on the local client:

# Set the basic configuration of the task to be performed
env {
  parallelism = 1
  job.mode = "BATCH"
}

# Create a source to connect to sftp
source {
  SftpFile {
    host = "sftp"
    port = 22
    user = "nexus"
    password = "pass"
    path = "tmp/nexus/read/json"
    file_format_type = "json"
    result_table_name = "sftp"
    schema = {
      fields {
        c_map = "map<string, string>"
        c_array = "array<int>"
        c_string = string
        c_boolean = boolean
        c_tinyint = tinyint
        c_smallint = smallint
        c_int = int
        c_bigint = bigint
        c_float = float
        c_double = double
        c_bytes = bytes
        c_date = date
        c_decimal = "decimal(38, 18)"
        c_timestamp = timestamp
        c_row = {
          C_MAP = "map<string, string>"
          C_ARRAY = "array<int>"
          C_STRING = string
          C_BOOLEAN = boolean
          C_TINYINT = tinyint
          C_SMALLINT = smallint
          C_INT = int
          C_BIGINT = bigint
          C_FLOAT = float
          C_DOUBLE = double
          C_BYTES = bytes
          C_DATE = date
          C_DECIMAL = "decimal(38, 18)"
          C_TIMESTAMP = timestamp
        }
      }
    }
  }
}

# Console printing of the read sftp data
sink {
  Console {
    parallelism = 1
  }
}

Data Type Mapping

Source Options

Source plugin common parameters, please refer to for details.

file_format_type [string]

compress_codec [string]

encoding [string]

schema [config]

fields [Config]

How to Create a Sftp Data Synchronization Jobs

​
​
​
​
​
​
​
​
​
​
Source Common Options
on Options