Selfuel Docs
  • Welcome to Selfuel Platform
    • Features
    • Capabilities
    • Target Audience
    • $150 Free Trial
  • Registration and Login
  • Platform UI
  • Stream Processing with Cortex
    • Cortex Quickstart Guide
    • Cortex Elements
      • Streams
      • Attributes
      • Mappings
        • 🚧Source Mapping Types
        • 🚧Sink Mapping Types
      • Node and Application Healthchecks
      • Nodes
        • Node Preview
        • Node Connectivites
        • Node Units
      • Expression Builder
        • 🚧Built-in Functions
      • Windows
        • Cron Window
        • Delay Window
        • Unique Event Window
        • First Event Window
        • Sliding Event Count Window
        • Tumbling Event Count Window
        • Session Window
        • Tumbling Event Sort Window
        • Sliding Time Window
        • Tumbling Time Window
        • Sliding Time and Event Count Window
      • Store and Cache
        • RDBMS
        • MongoDB
        • Redis
        • Elasticsearch
    • Applications
      • Applications Page
      • Creating Applications using Canvas
      • Connector Nodes Cluster
        • Source Nodes
          • CDC Source
          • Email Source
          • HTTP Source
          • HTTP Call Response Source
          • HTTP Service Source
          • Kafka Source
          • RabbitMQ Source
          • gRPC Source
          • JMS Source
          • Kafka Multi DC Source
          • JMS Source
          • AWS S3 Source
          • Google Pub-sub Source
          • AWS SQS Source
          • MQTT Source
          • Google Cloud Storage Source
          • HTTP SSE Source
          • WebSubHub Source
        • Sink Nodes
          • Email Sink
          • HTTP Sink
          • HTTP Service Response Sink
          • HTTP Call Sink
          • Kafka Sink
          • RabbitMQ Sink
          • gRPC Sink
          • JMS Sink
          • Kafka Multi DC Sink
          • AWS S3 Sink
          • Google Pub-sub Sink
          • AWS SQS Sink
          • MQTT Sink
          • Google Cloud Storage Sink
          • HTTP SSE Sink
          • WebSubHub Sink
      • Processing Nodes Cluster
        • Query
        • Join
        • Pattern
        • Sequence
        • Processor
        • 🚧On-demand Query
      • Buffer Nodes Cluster
        • Stream
        • Table
        • Window
        • Aggregation
        • Trigger
    • Run Applications
      • Run Applications Using Runners
      • Update Running Applications
      • Application Versioning
  • Data Integration with Nexus
    • Nexus Quickstart Guide
    • Nexus Elements
      • Concept
        • Config
        • Schema Feature
        • Speed Control
      • Connectors
        • Source
          • Source Connector Features
          • Source Common Options
          • AmazonDynamoDB
          • AmazonSqs
          • Cassandra
          • Clickhouse
          • CosFile
          • DB2
          • Doris
          • Easysearch
          • Elasticsearch
          • FakeSource
          • FtpFile
          • Github
          • Gitlab
          • GoogleSheets
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • HiveJdbc
          • Http
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Jira
          • Kingbase
          • Klaviyo
          • Kudu
          • Lemlist
          • Maxcompute
          • Milvus
          • MongoDB CDC
          • MongoDB
          • My Hours
          • MySQL CDC
          • MySQL
          • Neo4j
          • Notion
          • ObsFile
          • OceanBase
          • OneSignal
          • OpenMldb
          • Oracle CDC
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Persistiq
          • Phoenix
          • PostgreSQL CDC
          • PostgreSQL
          • Apache Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3File
          • SftpFile
          • Sls
          • Snowflake
          • Socket
          • SQL Server CDC
          • SQL Server
          • StarRocks
          • TDengine
          • Vertica
          • Web3j
          • Kafka
        • Sink
          • Sink Connector Features
          • Sink Common Options
          • Activemq
          • AmazonDynamoDB
          • AmazonSqs
          • Assert
          • Cassandra
          • Clickhouse
          • ClickhouseFile
          • CosFile
          • DB2
          • DataHub
          • DingTalk
          • Doris
          • Druid
          • INFINI Easysearch
          • Elasticsearch
          • Email
          • Enterprise WeChat
          • Feishu
          • FtpFile
          • GoogleFirestore
          • Greenplum
          • Hbase
          • HdfsFile
          • Hive
          • Http
          • Hudi
          • Apache Iceberg
          • InfluxDB
          • IoTDB
          • JDBC
          • Kafka
          • Kingbase
          • Kudu
          • Maxcompute
          • Milvus
          • MongoDB
          • MySQL
          • Neo4j
          • ObsFile
          • OceanBase
          • Oracle
          • OssFile
          • OssJindoFile
          • Paimon
          • Phoenix
          • PostgreSql
          • Pulsar
          • Rabbitmq
          • Redis
          • Redshift
          • RocketMQ
          • S3Redshift
          • S3File
          • SelectDB Cloud
          • Sentry
          • SftpFile
          • Slack
          • Snowflake
          • Socket
          • SQL Server
          • StarRocks
          • TDengine
          • Tablestore
          • Vertica
        • Formats
          • Avro format
          • Canal Format
          • CDC Compatible Debezium-json
          • Debezium Format
          • Kafka source compatible kafka-connect-json
          • MaxWell Format
          • Ogg Format
        • Error Quick Reference Manual
      • Transform
        • Transform Common Options
        • Copy
        • FieldMapper
        • FilterRowKind
        • Filter
        • JsonPath
        • LLM
        • Replace
        • Split
        • SQL Functions
        • SQL
    • Integrations
      • Integrations Page
      • Creating Integrations Using Json
    • Run Integrations
      • Run Integrations Using Runners
      • Integration Versioning
  • Batch Processing/Storage with Maxim
    • Maxim Quickstart Guide
    • Maxim Elements
    • Queries
    • Run Queries
  • Orchestration with Routines
    • Routines Quickstart Guide
    • Routines Elements
    • Routines
    • Run Routines
  • Runners
    • Runners Page
    • Create a Runner to Run Applications
  • Security
    • Vaults
      • Vaults Page
      • Create Vaults
        • Runner-level Vaults
        • Application-level Vaults
      • Edit and Delete Vaults
      • 🚧Utilizing Vaults in Applications and Runners
    • Certificates
      • Certificates Page
      • 🚧Utilizing Certificates in Applications
      • 🟨Setting Up Security Settings
  • Monitoring Performance
    • Dashboard
    • Application Details
    • Runner Details
  • Logging
    • Log Types
  • Cost Management
    • SaaS
      • Pay-as-you-go
        • Hard Budget Cap
        • Soft Budget Cap
      • Subscriptions
    • On-prem
  • Organization Settings
    • General
    • Access Controls
      • User Roles and Privileges
    • Current Costs
    • Billing Addresses
    • Payment Accounts
    • Subscriptions
    • Pricing
    • Invoicing
  • User Settings
  • Troubleshooting
  • FAQs
Powered by GitBook
On this page
  • Key features​
  • Data Type Mapping​
  • Options​
  • How to Create a Oss Data Synchronization Jobs​
  1. Data Integration with Nexus
  2. Nexus Elements
  3. Connectors
  4. Source

OssFile

PreviousOracleNextOssJindoFile

Last updated 8 months ago

Oss file source connector

Key features

Read all the data in a split in a pollNext call. What splits are read will be saved in snapshot.

Data type mapping is related to the type of file being read, We supported as the following file types:

text csv parquet orc json excel xml

If you assign file type to json, you should also assign schema option to tell connector how to parse data to the row you want.

For example:

upstream data is the following:


{"code":  200, "data":  "get success", "success":  true}

You can also save multiple pieces of data in one file and split them by newline:


{"code":  200, "data":  "get success", "success":  true}
{"code":  300, "data":  "get failed", "success":  false}

you should assign schema as the following:


schema {
    fields {
        code = int
        data = string
        success = boolean
    }
}

connector will generate data as the following:

code
data
success

200

get success

true

If you assign file type to text csv, you can choose to specify the schema information or not.

For example, upstream data is the following:


tyrantlucifer#26#male

If you do not assign data schema connector will treat the upstream data as the following:

content

tyrantlucifer#26#male

If you assign data schema, you should also assign the option field_delimiter too except CSV file type

you should assign schema and delimiter as the following:


field_delimiter = "#"
schema {
    fields {
        name = string
        age = int
        gender = string 
    }
}

connector will generate data as the following:

name
age
gender

tyrantlucifer

26

male

If you assign file type to parquet orc, schema option not required, connector can find the schema of upstream data automatically.

Orc Data type
Nexus Data type

BOOLEAN

BOOLEAN

INT

INT

BYTE

BYTE

SHORT

SHORT

LONG

LONG

FLOAT

FLOAT

DOUBLE

DOUBLE

BINARY

BINARY

STRING VARCHAR CHAR

STRING

DATE

LOCAL_DATE_TYPE

TIMESTAMP

LOCAL_DATE_TIME_TYPE

DECIMAL

DECIMAL

LIST(STRING)

STRING_ARRAY_TYPE

LIST(BOOLEAN)

BOOLEAN_ARRAY_TYPE

LIST(TINYINT)

BYTE_ARRAY_TYPE

LIST(SMALLINT)

SHORT_ARRAY_TYPE

LIST(INT)

INT_ARRAY_TYPE

LIST(BIGINT)

LONG_ARRAY_TYPE

LIST(FLOAT)

FLOAT_ARRAY_TYPE

LIST(DOUBLE)

DOUBLE_ARRAY_TYPE

Map<K,V>

MapType, This type of K and V will transform to Nexus type

STRUCT

NexusRowType

If you assign file type to parquet orc, schema option not required, connector can find the schema of upstream data automatically.

Orc Data type
Nexus Data type

INT_8

BYTE

INT_16

SHORT

DATE

DATE

TIMESTAMP_MILLIS

TIMESTAMP

INT64

LONG

INT96

TIMESTAMP

BINARY

BYTES

FLOAT

FLOAT

DOUBLE

DOUBLE

BOOLEAN

BOOLEAN

FIXED_LEN_BYTE_ARRAY

TIMESTAMP DECIMAL

DECIMAL

DECIMAL

LIST(STRING)

STRING_ARRAY_TYPE

LIST(BOOLEAN)

BOOLEAN_ARRAY_TYPE

LIST(TINYINT)

BYTE_ARRAY_TYPE

LIST(SMALLINT)

SHORT_ARRAY_TYPE

LIST(INT)

INT_ARRAY_TYPE

LIST(BIGINT)

LONG_ARRAY_TYPE

LIST(FLOAT)

FLOAT_ARRAY_TYPE

LIST(DOUBLE)

DOUBLE_ARRAY_TYPE

Map<K,V>

MapType, This type of K and V will transform to Nexus type

STRUCT

NexusRowType

name
type
required
default value
Description

path

string

yes

-

The Oss path that needs to be read can have sub paths, but the sub paths need to meet certain format requirements. Specific requirements can be referred to "parse_partition_from_path" option

file_format_type

string

yes

-

File type, supported as the following file types: text csv parquet orc json excel xml binary

bucket

string

yes

-

The bucket address of oss file system, for example: oss://nexus-test.

endpoint

string

yes

-

fs oss endpoint

read_columns

list

no

-

The read column list of the data source, user can use it to implement field projection. The file type supported column projection as the following shown: text csv parquet orc json excel xml . If the user wants to use this feature when reading text json csv files, the "schema" option must be configured.

access_key

string

no

-

access_secret

string

no

-

delimiter

string

no

\001

Field delimiter, used to tell connector how to slice and dice fields when reading text files. Default \001, the same as hive's default delimiter.

parse_partition_from_path

boolean

no

true

Control whether parse the partition keys and values from file path. For example if you read a file from path oss://hadoop-cluster/tmp/nexus/parquet/name=tyrantlucifer/age=26. Every record data from file will be added these two fields: name="tyrantlucifer", age=16

date_format

string

no

yyyy-MM-dd

Date type format, used to tell connector how to convert string to date, supported as the following formats:yyyy-MM-dd yyyy.MM.dd yyyy/MM/dd. default yyyy-MM-dd

datetime_format

string

no

yyyy-MM-dd HH:mm:ss

Datetime type format, used to tell connector how to convert string to datetime, supported as the following formats:yyyy-MM-dd HH:mm:ss yyyy.MM.dd HH:mm:ss yyyy/MM/dd HH:mm:ss yyyyMMddHHmmss

time_format

string

no

HH:mm:ss

Time type format, used to tell connector how to convert string to time, supported as the following formats:HH:mm:ss HH:mm:ss.SSS

skip_header_row_number

long

no

0

Skip the first few lines, but only for the txt and csv. For example, set like following:skip_header_row_number = 2. Then Nexus will skip the first 2 lines from source files

schema

config

no

-

The schema of upstream data.

sheet_name

string

no

-

Reader the sheet of the workbook,Only used when file_format is excel.

xml_row_tag

string

no

-

Specifies the tag name of the data rows within the XML file, only used when file_format is xml.

xml_use_attr_format

boolean

no

-

Specifies whether to process data using the tag attribute format, only used when file_format is xml.

compress_codec

string

no

none

Which compress codec the files used.

encoding

string

no

UTF-8

file_filter_pattern

string

no

*.txt means you only need read the files end with .txt

common-options

config

no

-

The compress codec of files and the details that supported as the following shown:

  • txt: lzo none

  • json: lzo none

  • csv: lzo none

  • orc/parquet: automatically recognizes the compression type, no additional settings required.

Only used when file_format_type is json,text,csv,xml. The encoding of the file to read. This param will be parsed by Charset.forName(encoding).

Filter pattern, which used for filtering files.

Only need to be configured when the file_format_type are text, json, excel, xml or csv ( Or other format we can't read the schema from metadata).

The schema of upstream data.

The following example demonstrates how to create a data synchronization job that reads data from Oss and prints it on the local client:

# Set the basic configuration of the task to be performed
env {
  parallelism = 1
  job.mode = "BATCH"
}

# Create a source to connect to Oss
source {
  OssFile {
    path = "/nexus/orc"
    bucket = "oss://tyrantlucifer-image-bed"
    access_key = "xxxxxxxxxxxxxxxxx"
    access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
    endpoint = "oss-cn-beijing.aliyuncs.com"
    file_format_type = "orc"
  }
}

# Console printing of the read Oss data
sink {
  Console {
  }
}
# Set the basic configuration of the task to be performed
env {
  parallelism = 1
  job.mode = "BATCH"
}

# Create a source to connect to Oss
source {
  OssFile {
    path = "/nexus/json"
    bucket = "oss://tyrantlucifer-image-bed"
    access_key = "xxxxxxxxxxxxxxxxx"
    access_secret = "xxxxxxxxxxxxxxxxxxxxxx"
    endpoint = "oss-cn-beijing.aliyuncs.com"
    file_format_type = "json"
    schema {
      fields {
        id = int 
        name = string
      }
    }
  }
}

# Console printing of the read Oss data
sink {
  Console {
  }
}

No need to config schema file type, eg: orc.

env {
  parallelism = 1
  spark.app.name = "Nexus"
  spark.executor.instances = 2
  spark.executor.cores = 1
  spark.executor.memory = "1g"
  spark.master = local
  job.mode = "BATCH"
}

source {
  OssFile {
    tables_configs = [
      {
          schema = {
              table = "fake01"
          }
          bucket = "oss://whale-ops"
          access_key = "xxxxxxxxxxxxxxxxxxx"
          access_secret = "xxxxxxxxxxxxxxxxxxx"
          endpoint = "https://oss-accelerate.aliyuncs.com"
          path = "/test/nexus/read/orc"
          file_format_type = "orc"
      },
      {
          schema = {
              table = "fake02"
          }
          bucket = "oss://whale-ops"
          access_key = "xxxxxxxxxxxxxxxxxxx"
          access_secret = "xxxxxxxxxxxxxxxxxxx"
          endpoint = "https://oss-accelerate.aliyuncs.com"
          path = "/test/nexus/read/orc"
          file_format_type = "orc"
      }
    ]
    result_table_name = "fake"
  }
}

sink {
  Assert {
    rules {
        table-names = ["fake01", "fake02"]
    }
  }
}

Need config schema file type, eg: json


env {
  execution.parallelism = 1
  spark.app.name = "Nexus"
  spark.executor.instances = 2
  spark.executor.cores = 1
  spark.executor.memory = "1g"
  spark.master = local
  job.mode = "BATCH"
}

source {
  OssFile {
    tables_configs = [
      {
          bucket = "oss://whale-ops"
          access_key = "xxxxxxxxxxxxxxxxxxx"
          access_secret = "xxxxxxxxxxxxxxxxxxx"
          endpoint = "https://oss-accelerate.aliyuncs.com"
          path = "/test/nexus/read/json"
          file_format_type = "json"
          schema = {
            table = "fake01"
            fields {
              c_map = "map<string, string>"
              c_array = "array<int>"
              c_string = string
              c_boolean = boolean
              c_tinyint = tinyint
              c_smallint = smallint
              c_int = int
              c_bigint = bigint
              c_float = float
              c_double = double
              c_bytes = bytes
              c_date = date
              c_decimal = "decimal(38, 18)"
              c_timestamp = timestamp
              c_row = {
                C_MAP = "map<string, string>"
                C_ARRAY = "array<int>"
                C_STRING = string
                C_BOOLEAN = boolean
                C_TINYINT = tinyint
                C_SMALLINT = smallint
                C_INT = int
                C_BIGINT = bigint
                C_FLOAT = float
                C_DOUBLE = double
                C_BYTES = bytes
                C_DATE = date
                C_DECIMAL = "decimal(38, 18)"
                C_TIMESTAMP = timestamp
              }
            }
          }
      },
      {
          bucket = "oss://whale-ops"
          access_key = "xxxxxxxxxxxxxxxxxxx"
          access_secret = "xxxxxxxxxxxxxxxxxxx"
          endpoint = "https://oss-accelerate.aliyuncs.com"
          path = "/test/nexus/read/json"
          file_format_type = "json"
          schema = {
            table = "fake02"
            fields {
              c_map = "map<string, string>"
              c_array = "array<int>"
              c_string = string
              c_boolean = boolean
              c_tinyint = tinyint
              c_smallint = smallint
              c_int = int
              c_bigint = bigint
              c_float = float
              c_double = double
              c_bytes = bytes
              c_date = date
              c_decimal = "decimal(38, 18)"
              c_timestamp = timestamp
              c_row = {
                C_MAP = "map<string, string>"
                C_ARRAY = "array<int>"
                C_STRING = string
                C_BOOLEAN = boolean
                C_TINYINT = tinyint
                C_SMALLINT = smallint
                C_INT = int
                C_BIGINT = bigint
                C_FLOAT = float
                C_DOUBLE = double
                C_BYTES = bytes
                C_DATE = date
                C_DECIMAL = "decimal(38, 18)"
                C_TIMESTAMP = timestamp
              }
            }
          }
      }
    ]
    result_table_name = "fake"
  }
}

sink {
  Assert {
    rules {
      table-names = ["fake01", "fake02"]
    }
  }
}

Data Type Mapping

JSON File Type

Text Or CSV File Type

Orc File Type

Parquet File Type

Options

Source plugin common parameters, please refer to for details.

compress_codec [string]

encoding [string]

file_filter_pattern [string]

schema [config]

fields [Config]

How to Create a Oss Data Synchronization Jobs

Multiple Table

​
​
​
​
​
​
​
​
​
​
​
​
​
​
Source Common Options